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A well-known model of a moving oscillator is used to propose a new method for optimal feedback control synthesis, based on 
recalculation (correction) of an open-loop control along a real trajectory. The correction procedure involves solving a special 
differential equation for the switching times. © 1996 Elsevier Science Ltd. All rights reserved. 

The subject of this paper is related to the investigations in [1-6]. 

1. STATEMENT OF THE P R O B L E M  

We shall investigate the problem of steering a control system 

X l = X  2, x 2 = u ,  J:3 = x 4 ,  .t4 = -X3  +u,  luk<l (1.1) 

in the least possible time to an equilibrium position xi = 0 O = 1 . . . .  , 4 ) .  In standard matrix notion, 
these equations may be written as dx/dt  = A x ( t )  + Bu .  System (1.1) is a simplified model of a pendulum 
regulated by a force applied at the point of suspension. Other mechanical examples whose description 
reduces, under certain assumptions, to (1.1) may be found in [1-3]. 

System (1.1) has two pure imaginary roots and two non-zero roots. In addition, it satisfies the 
controllability condilion. Consequently [7], the motion may be steered to zero from any starting position 
x0 ~ R 4 in a finite time T. It is well-known [8] that an optimal open-loop control is of the on-off type 
(i.e. it takes values of _ 1 only) and is defined by a finite set of switching times ti and the terminal time 
T. It is well-known [8] that an optimal open-loop control is of the on-off type (i.e. it takes values of _.+ 1 
only) and is defined by a finite set of switching times t i and the terminal time T. From the standpoint 
of applications, positional control (i.e. control based on feedback) is preferable to open-loop control, 
as it possesses the self-regulating property in cases where, in a practical system, factors extraneous to 
the model are active. Optimal positional control may be synthesized using a switching surface, which 
divides the space R 4 into more parts. In one part the optimal control takes the value -1, and in the 
other, + 1. In the problem just introduced, however, the switching surface is rather complicated and 
its construction and utilization require a powerful computer. 

As a compromise, one might resort to a control scheme in which open-loop control is constantly 
corrected in real time. This kind of control would have the same properties as positional control, without 
requiring prohibitive computing expenses. The method proposed in this paper is applicable equally to 
the design of an optimal open-loop control at an arbitrary starting point and to real-time correction of 
such a control. Methods for correcting open-loop controls in problems with a linear performance 
functional and linear constraints on the terminal state were considered in [5, 6]. 

2. P A R A M E T R I Z A T I O N  O F  O P T I M A L  P R O C E S S E S  

2.1. The idea o fparametr iza t ion .  In linear systems, Pontryagin's maximum principle may be interpreted 
as a way of parametr~fing the family of extremal processes, that is, the processes that form the boundary 
of the accessibility region. The parameter is the boundary value of the solution of the adjoint system. 
The construction of an optimal control reduces, essentially, to determining a suitable parameter value. 
The set of extremal controls is independent of the starting point. 
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We will write the fundamental relation of the maximum principle in the form 

l 'O(x)Bu(T - x) = max l'dO(x)B~ (2•1) 
I~J_<l 

where x = T - t is reversed time, l is a vector with the geometrical meaning of the normal to the 
accessibility domain and ~(x) is the Cauchy fundamental matrix. We shall use the well-known device 
of "pulling" trajectories out of the origin in reversed time 

dye I dr = -(AYe(x) + Bfi) (2.2) 

For any T > 0, every optimal trajectory of (2.2) is an optimal trajectory of (1.1) "pulled" out of the 
starting position ~(T). Indeed: x(t) = £(x), u(t) = ~(~). Thus, given a starting state x °, one must find 
a vector I determining the optimal trajectory of (2.2) that reaches x °. 

We putp(x) = ~(x )B  and replace (2.1) by the equation for the switching times (in reversed time). 
We obtain 

l 'p(x)=O (2.3) 

In the last transformation information concerning the sign of the control has been lost, since the roots 
of (2.3) determine a pair of sign-symmetric controls. We therefore introduce an additional parameter 

= ~(+0) which, together with the roots of Eq. (2.3), uniquely defines the control over the whole interval 
[0, 7]. As a result it becomes possible to use an arbitrary non-zero representative of the straight line, 
)d, without worrying about the sign of the scalar product l'p(~) of the roots. 

For system (1.1) we have 

l 0  

0 1 0 
• (x)= 0 0 cosx sinx ' 

0 0 - s inx  cosxll 

p(x)= 
sin x 

cos Xll 

In scalar form Eq. (2.3) becomes 

l t x + 12 + l 3 sin 1: + 14 cos x = 0 (2•4) 

Usually, in order to fit the number of free parameters to the dimensions of the system, one imposes 
the additional restriction I l I = 1. In that case the three-parameter equivalent of (2.4) is the equality 

ax + b = sin(x + tp) (2.5) 

The solutions of Eq. (2.5) in the interval [0, 7] yield the switching times; they are the points at which 
the sine curve sin(~ + tp) intersects the straight line ax + b. If the sine curve does not intersect 
the straight line anywhere in [0, T], this means that the control applied up to time T has the constant 
value 6. 

2.2. Parametrization by switching times. Let  xi (i = 1 , . . . ,  n) denote the ordered roots of Eq. (2.3) in 
the interval [0, 7]. The following two propositions are stated without proof. 

Proposition 1. Suppose n i> 3. With the exception of the special case when the distance between any 
two roots is a multiple of 2~, one can find three distinct roots xil, xi2, xi- (e.g. two adjacent roots and 

• .3 

any third one) such that the vectorsp(xil),p(xi2),p(xi3) are linearly independent. In the aforementioned 
special case the optimal control is constant. 

Proposition 2. The trajectory segment ~(x), 0 ~< x ~< '~3 lies on the switching surface. 
Let us introduce a parametrization of optimal processes in which the parameters are the switching times• 

Suppose n i> 3. Consider three roots of Eq. (2 3), denoting them by xil, xi, xi, such that the vectors 
• :~ 3 p('17ii), p('l;i2), p('l;i3 ) are linearly independent• Then a non-zero representatwe of the straight lines )d 

may be expressed in terms of zil, ~i2, T'i3" Retaining the old notation I, we have 
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l =  ]~det(p(x~), p(x~z), p('ci3. ), ek)e k 
k=l 

Here ek (k = 1 . . . .  ,4) is an orthonormal basis of the space R 4 and det is the determinant of the matrix 
with columns p(xq), P(Xi2), P('~i3), ek. Equation (2.3) becomes 

g( x) ~-det(p( xit ), p('ci2 ), p( xo ), p( x) ) = 0 (2.6) 

The times x = xil, %2, zi3 are automatically roots of Eq. (2.6). The other switching times are implicit func- 
tions of zil, ziz, "[i 3. However, the conditions of the Implicit Function theorem are not always satisfied. 
Accordingly, we introduce a classification of optimal processes. 

We will call a root of Eq. (2.3) regular (or: a switching) if it is neither 0 nor T and has multiplicity 1, 
and irregular otherwise. 

We will call an optimal process (OP) regular if n t> 3 and all the roots of Eq. (2.3) are regular. An 
OP with n />  3 is irregular if at least one irregular root of Eq. (2.3) exists in the interval [0, 7]. An OP 
for which Eq. (2.3) has less than three roots will also be considered irregular. 

In the regular case, any three switchings may be taken as parameters. The equation for determining 
all switching times is (2.6). 

The subset of irregular OPs admits of a special parametrization. We shall introduce certain 
relationships that define (for fixed T) two-parameter families of OPs with a single irregular root. 
These relationships are important in the context of numerical constructions. The other cases 
(double or triple irregularity) occur less probably in that context and will therefore not be described 
in this paper. 

Suppose n t> 3. Assume that there are at least two switchings and one irregular root. The existence 
of an irregular root irnposes an additional restriction on the vector L To determine vectors l corresponding 
to irregular processes, we will use the irregular root in the expression for l. Consequently, along with 
the general relationslhip (2.6), which includes all OPs without exception, we obtain special analogues 
of (2.6) for irregular OPs. 

If ~ = 0 is a root, we take not any triple of vectors orthogonal to I but a triple including the vector 
p(0) and the two vectorsp(~), p(~) with regular roots ~, ~. Equation (2.6) becomes 

det(p(~), p(~), p(0), p(x))=0 (2.7) 

Similarly, for the rooz! x = T 

det(p(~), p(~), p(T), p('¢))=O (2.8) 

If the irregularity is due to the existence of a multiple root x. (the sine curve is tangent to the straight 
line), the vector I is orthogonal to p(z.) and p(z.). Taking this pair of vectors and the vectorp(~) with 
a regular root ~, we obtain 

det(p($), p('c.), p(x.), p(x))=O (2.9) 

Equations (2.7)-(2.9) yield a parametrization of irregular OPs with one singularity. Similar derivations 
yield relationships for irregular OPs characterized by the existence of two or more singularities. 

Note that when n 3:3 and the OP is regular or irregular in the sense just considered, the direction 
l is unique. 

Let n = 2 and suppose that the roots '171 and x2 are regular To such an OP with two switchings there 
corresponds a two-dimensional cone of vectors i, for each of which Eq. (2.3) has the same pair of regular 
roots xa, x2. There are no other roots if l is in the interior of the cone. For the generators of the cone, 
a third root appears (though the structure of the OP is unchanged). One of the generators produces 
the irregular root max[0, X*l], the other, the root rain[T, z*2], where Z*l and z*2 are the roots of the 
equation 

det(p(zl), p(z2), p(z.), p(z.))=O 

nearest Xl on the left and nearest x2 on the right. The combination x. a > 0, "17. 2 < T is impossible. Thus, 
each specific pair xl, '172 may be completed by a third root, in two ways. In other words, the OP in question 
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is described by two of the relationships (2.7)-(2.9). In (2.7) and (2.8) the roots ~, ~ are the times xl, and 
x2, while in (2.9) the roots ~ and x. are the times xl and x*l(x*2). 

We have thus successfully parametrized regular OPs and two-parameter irregular OPs in terms of 
switching times. 

2.3. Singular surfaces.  If one varies not only the parameters ~, ~ but also T, then the ends £(T) of the 
irregular trajectories defined by (2.7)-(2.9) form a system of three-dimensional singular surfaces that 
divides R 4 into domains of regular OPs. In particular, a singular surface of type (2.8) is a switching surface. 
If an irregular OP is described by Eq. (2.8) and it has more than two switchings, then the corresponding 
trajectory pierces the switching surface at time T, crossing from one regular domain into another. In 
all other cases, irregular optimal trajectories move along singular surfaces. 

The points of intersection of two three-dimensional singular surfaces of different types (in particular, 
trajectories with a single switching of the control) generate two-dimensional singular manifolds. The 
latter meet on singular curves. In particular, a singular curve is a pair of trajectories corresponding to 
the constant control u = -_- 1. We have described the structure of a three-dimensional switching surface 
and singular manifolds of lower dimensions on it elsewhere.t 

Let us consider a three-dimensional singular surface as the boundary between two regular domains, 
and describe the different ways in which the number of switching times changes as the surface is crossed. 
This information will be needed in the next section. If the number of regular roots on the surface exceeds 
two, the irregular root becomes regular in one domain (in the case of (2.7), (2.8)) or generates a pair 
of closely situated regular roots (in the case of (2.9)). In the second domain the irregular root disappears. 
The situation in which the number of regular roots is two is characterized by the presence of two 
("interchangeable") additional irregular roots (these are 0, T, or 0, x*2, or x.1, T). When the singular 
surface is crossed, one of the irregular roots disappears and the other becomes regular. 

The proposed parametrization (2.6)-(2.9) may also be used for other control systems. It reduces the 
number of variables participating in the specification of the OP and is also a convenient tool to describe 
irregularities. 

3. C O R R E C T I O N  P R O C E D U R E  

Let us consider a regular OP with switching times Xl, • • •, xn in an interval [0, 7]; let o be the sign 
of the controls ~ in the interval (0, xl). By the Cauchy formula 

n + l  . " c i  

2 = Y c ( T ) = o Y ~ ( - I ) '  ~ p ( ' c - T ) d x ;  % = 0 ,  x,,+~ =T  (3.1) 
i=l ~i-I 

Equations (2.6) and (3.1) enable us to determine the variations of the endS(T) of the trajectory and 
the switching times as the parameters x], Xz, "Ca, T are varied 

dye = MCds ,  dS = CdS 

s = ( x l , % , z 3 , T ) ' ,  S=(X I ..... z,,, T)' 

1 

0 
II I I j = l  , . . . , l l+  I 

=lla  U ,c= ia,, M Ila, j ii,__,..... ' 
a'C'k ~i=4 ...... 

0 

0 0 0 

I 0 0 

0 ! 0 

0 

0 0 1 

(3.2) 

32 1 3T = - ( A £  + B~(T)), fi(T) = ( - I ) n o  

~Yc l i)zj = ( - I ) J 2 o p ( x j  - T), j = I . . . . .  n 

tBELOUSOVA Ye. R. and ZARKH M. A., The switching surface in a linear fourth-order speed-of-response problem. 
Ekaterinburg, 1992. Deposited at VINITI 24.07.92, No. 2442-1392. 
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~T'i]¢~'~l =-det(~b(xl) ,  P('t2), p(x3), p ( x i ) ) l d  

~ t i l ~  2 = - d e t ( p ( x l ) ,  /b(x2), p(1:3), p('ci)) ld 

OxilOx3=-det(p( 'c,) ,  p(x2), /~(x3), p ( x i ) ) l d  

d=det (p(x l ) ,  p(x2), P(X3), p(xi))  

For  a regular  process, the matrix MC is non-singular, and it therefore  follows from (3.2) that 

dS = C( MC)-I dYc (3.3) 

We can now go on to construct an optimal open-loop control  (OC) for an arbitrarily specified starting 
point  x0 e R 4. Suppose we have a certain open-loop control  (not  related in any way to x0) in a certain 
t ime interval [0, Toe], given by a vector  $00 and a pa ramete r  ~0o. The  first n components  o f  $00 must  be 
roots  o f  Eq. (2.6), the others  need not  even be in the interval [0, Too]. Le t  x00 = x(T00) be the initial 
state, evaluated by tormula (3.1) and corresponding to this control.  We require  the variation of  the end 
o f  the trajectory to be directed toward the point  x0. To that end we express d~ in the form 

d£ = (% - X0o)d~t (3.4) 

where  ~t is a scalar parametr izing the interval [x00, x0]: x(~t) = x00 + Ix(x0 - x00), 0 ~ ~t ~< 1, x(0) = x00, 
x(1) = x0. Substituting (3.4) into (3.3), we obtain the equat ion 

dS I dlx = C( MC) -I ( x o - x00) (3.5) 

If the interval [x00,x0] does not  cut singular surfaces, then, integrating (3.5) with initial condit ion S(0) 
= $00, we find an OC for the pointx0, given by a pair So = S(1), 60 = 600. Integration of  Eq. (3.5) requires 
recalculat ion of  the matrices C and M at each step, using explicit formulae.  

Of  course, it is no known a priori whether  the segment [x00,x0] cuts singular surfaces. Therefore ,  when 
integrating (3.5), one must  check for  approach to a singular surface and, on crossing it, t ransform the 
vector  S in accordance with the scheme described in Section 2.3. In cases when the switching t ime drifts 
or  vanishes, the sign o f  a is reversed.  

Remark. With the exception of specially selected cases, the probability that the segment [x~,x0] will cut a singular 
manifold of dimension less than three is zero. That is why we described only three-dimensional singular surfaces 
in Section 2.3. 

To demonstrate the performance of the algorithm, consider the construction of an OC for the initial state 
x 0 = (0.05, 0.50, 6.00, -2.00)'. The initial control was the pair S00 = (2.00, 5.00, 7.50, 8.00)', o00 = +1. The 
corresponding starting point is x00 = (4.75, -1.00, 4.80, -0.87)', calculated by formula (3.1). The control S00, o00 
is optimal for x00, bec~mse only the times 2, 5 and 7.5 are roots of Eq. (2.6) in the interval [0. 8]. Figure 1 is a 
graph showing the variation of the components of the vector S along the interval Ix00, x0]. The interval Ix00, x0] 
cuts two singular surfaces, and crossing either of them entailed addition of a new switching. Arrival at the 
surface was determined by the equality g(0) = 0, while the inequality Xl > 0 indicated that the zero root must 
be included in the vector S. The algorithm finally produced an OC for the starting position x0, defined by the pair 
So --- (0.57, 2.53, 6.06, 9.82, 11.52, 12.08)" o0 = +1. The time required for optimum steering from x0 to zero was 
12.08. 

As a second illustration, consider the problem of constructing an OC for initial points on the straight line 
X1 = {(xl: 0: 0: 0) : xl ~--- RZ}. It has been shown [1] that ifx 1 ~ ±4~k  2, k ~ N, the OC has three switchings such 
that 

"t 2 = T/2, "~3 - -  T -  xl (3.6) 

If xl = ±4rc2k 2, the OC has one switching xl = 2xk, and the steering time is T = 4rrk. The previously proposed 
method [1] for determining the times Xl, x2, x3, T in the general case reduces to solving a certain transcendental 
equation in T. 

Following the appro~Lch proposed in this paper, we introduce a differential equation describing the variation of 
the OP as the starting point "moves" along the straight line X1. The solution of this equation yields the OC as a 
function of xl. 

For processes with three switchings, C is the identity matrix, so that the relationship dJ? = MCds of (3.2) with 
= -1 becomes 
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] - (x  l - T )  (x 2 - T )  - (x  3 - T )  
-1 1 -1  

2 -sin(x j - T )  sin(x 2 - T )  -sin(x 3 - T )  

--COS(l; I - T )  COS('C 2 - T )  --COS('~ 3 - T) 

0 Nd q=H 
1/2 Hdrll ~d~411 

(3.7) 

Let us consider variations of the form dx = (dXl; 0; 0; 0) '  and substitute expressions (3.6) for "1; 2 and x3 and the 
analogous expressions for the differentials dx2 and dx 3 into (3.7). It will suffice to use just one row of the matrix 
equality (3.7). Selecting the third row and solving it for d'q/dT, we obtain 

dx! / dT= (sin x I - sin(T / 2)) / [2(sin(xn - T) + sin x I )] (3.8) 

Using formula (3.1), it is not difficult to check that the OC S00 = (n/2; ~; 3n/2; 2~)', t~00 = -1 corresponds to 
the starting position x00 = (n2/2; 0; 0; 0)'. Thus, a suitable initial condition for (3.8) is ~1(2~) = rd2. Integrating 
(3.8), we obtain xx = Xl(T). Using (3.6), we get x2 = x2(T), x3 = xa(T). Equation (3.1) gives Xl = Xl(T). Hence one 
can express T in terms of xl. Figure 2 plots the functions xl, x2, x3, T against Xl. 

Thus Eq. (3.8) enables one to find OCs immediately for all points of the straight line X1. 

4. C O R R E C T I N G  F E E D B A C K  

We shall now consider  system (1.1) as an idealized, s tandard model ,  used to design controls in a real 
system whose  dynamics may  depar t  f rom that  of  (1.1) (e.g. owing to noise). Le tx ( t )  denote  the posit ion 
of  the s tandard  system at t ime t andS(t )  the posit ion of  the real system. We shall assume that  the vectors  
x(t) and g(t) are  of  the same length. Suppose  that  both  systems start  f rom the same posi t ion x ° at  t ime 
t o = 0. The  t imes at which the real  system will be  corrected will depend  on a special p a r a m e t e r  e > 0. 
At  these t imes the posit ion of  the  s tandard  system will change abruptly. 

We obtain  an O C  S(x°), t~(x °) and, thereby,  the s tandard mot ion  x(-) of  system (1.1) f rom the point  
x °. T h e  s tandard  open- loop  control  governs the real system up to the first t ime t~ at which I x(t~) - 
£( t l )  I ~ e. ~ O C  for  the  posi t ion x(tl)  of  the s tandard system is known: S(x(tl)) = S(x )l[0, r(x0H~], 
G(x(t'~)) = G(xV). Af te r  carrying out  the correct ion procedure ,  with the roles of  x00, x0 in (3.5) t aken  by 
the points  x(tT) and £(tT), respectively, one finds an O C  for  the state g(t~). This  yields a new s tandard 
mot ion  f rom the point  g(tT). T h e  same  O C  continues to govern the system until the next correct ion 
t ime t~, when  i x(t~) -~( t~) l  ~> e, and so on. 

The  correct ion t imes may  also be  selected differently, e.g. they may  be  made  to depend  on a given 
t ime step A. As A --~ 0 one  obtains  a cont inuous  correct ion regime.  

Remarks. 1. In case less than three switching times remain in the vector S(x(t*)) (i.e. the point x(t*) lies on the 
switching surface), one introduces additional switching times in order to ensure that the input to the procedure 
should contain corrections of a regular OP for some point close to x(t*). 
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If only one switching I; 1 remains in the vector S(x(t*)), additional switchings are introduced at xl - 6, xl + 6 
(where 6 is a small positive number). If the vector S(x(t*)) contains two switchings xl and x2, one introduces 
either two additional switchings x. - 6, x. + 6 (x, ~ (0, xa)), or one additional switching 6 (in the latter case the 
parameter c changes sign). The time x. and the appropriate version of those described are determined by the rule 
given in Section 2.2. If there are no switchings in x. - & x. + 6 (x. c (0, Xl)) one considers switchings T - 36, 
T -  26, T -  & 

2. Assuming that the real motion is described by a differential equation with a known or accurately measured 
right-hand side f, one can write down the continuous correction equation 

dS I dt = C(MC)  -1 ( f  - (A~ + Bu)) (4.1) 

Equation (4.1) has a classical solution in regular domains, which changes form after passing through singular 
surfaces of types (2.7) and (2.9). Solutions on switching surfaces are defined as in Filippov [9]. 

For correction in a :regular domain with a small time step A, we deduce from (4.1) that 

S(t + A) = S(t) + C(MC) -I ( i ( t  + A)- x(t  + A)) (4.2) 

Thus, we have a forraula that is identical with the single-step solution of Eq. (3.5). To carry out calculations using 
this formula one uses the states $ and x at discrete times. 

If the interval [x(t + A), $(t + A)] cuts a singular surface at some point x(t + A) + It(g(t + A) - x(t  + A)), 
0 ~< It ~< 1, Eq. (4.2) is replaced by two equations 

S, = S(t)  + ItC( MC) -I (.~(t + A) - x( t  + A)) 

S(t + A) = S* + (1 - It)C(MC) -I (.~(t + A) - x(t + A)) 

where the vector S. is transformed into S* in accordance with the crossed singularity. 
Let us demonstrate the performance of the correcting feedback for a "real" system described by the 

equation 

Table 1 

t~ S(x(t~ )) S(2(t~ )) 

1.41 (0.56; 2.53; 6.06; 9.82; 10.67) 
2,84 (0.70; 2.71; 6.17; 9.46) 
4.24 (0.84; 2.88; 6.21; 8.23) 
5,64 (0,93; 2.98; 6,20; 6,93) 
7.06 (0.99; 3,05; 5.58) 
8,45 ( 1,07; 3,21; 4,37) 
1 1 , 3 2  ( 1 . 1 4 ;  i,77) 

(0.70; 2.71; 6.17; 10.06; 10,88) 
(0.84; 2.88; 6.21; 9.63) 
(0.93; 2,98; 6.20; 8.33) 
(0.99; 3,05; 6.18; 7.00) 
(1,07; 3.21; 5.67; 5,76) 
(1.14; 3,32; 4.47; 4.63) 
(0.56; 1,62; 3,33; 4.11) 
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dYi AY , ( t )+Bu+u( t ) ,  v ( t )  ( 0 , 1 ( I , l ,  s in t ,  cos t ) '  t e [ 0 , 3 ~ ]  
dt O, t > 3rt 

where the matr icesA and B are the same as in (1.1), and v(t) is interpreted as some interference. 
Consider the starting point x ° = (0.05, 0.50, 6.00, -2.00)'.  The corresponding standard motion was found in 

Section 3. Figure 3 shows the standard optimal open-loop control for x ° (the solid line), the real control synthesized 
by correcting feedback (the dashed line; e = 0.3; the correction times are indicated by small circles) and the actual 
control obtained by continuous correction (the dash--dot line; the correction times are selected with a step A = 
0.05; the inclined dashed line indicated by crosses corresponds to a "chattering" control). Table 1, drawn up for 
the case e = 0.3, shows the correction times and the input and corrected switching vectors. The last correction was 
carried out after the interference had been cut off. All motions arrive at the origin. 

We wish to  t h a n k  V. S. Pa tsko  for  usefu l  d i scuss ions  a n d  c o m m e n t s  o n  this  pape r .  
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