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A well-known model of a moving oscillator is used to propose a new method for optimal feedback control synthesis, based on
recalculation (correction) of an open-loop control along a real trajectory. The correction procedure involves solving a special
differential equation for the switching times. © 1996 Elsevier Science Ltd. All rights reserved.

The subject of this paper is related to the investigations in [1-6].

1. STATEMENT OF THE PROBLEM

We shall investigate the problem of steering a control system
Xy =Xy, Xy =U, X3=Xq, X4 =—X3+u, <] (1.1

in the least possible time to an equilibrium positionx; = 0 (i = 1, . . ., 4). In standard matrix notion,
these equations may be written as dx/dt = Ax(t) + Bu. System (1.1) is a simplified model of a pendulum
regulated by a force applied at the point of suspension. Other mechanical examples whose description
reduces, under certain assumptions, to (1.1) may be found in [1-3].

System (1.1) has two pure imaginary roots and two non-zero roots. In addition, it satisfies the
controllablllty condition. Consequently [7], the motion may be steered to zero from any starting position
xp € R* in a finite time 7. It is well-known [8] that an optimal open-loop control is of the on-off type
(i.e. it takes values of +1 only) and is defined by a finite set of switching times ¢; and the terminal time
T. It is well-known [8] that an optimal open-loop control is of the on-off type (i.e. it takes values of 1
only) and is defined by a finite set of switching times f; and the terminal time 7. From the standpoint
of applications, positional control (i.e. control based on feedback) is preferable to open-loop control,
as it possesses the self-regulating property in cases where, in a practical system, factors extraneous to
the model are active. Optimal positional control may be synthesized using a switching surface, which
divides the space R* into more parts. In one part the optimal control takes the value —1, and in the
other, +1. In the problem just introduced, however, the switching surface is rather complicated and
its construction and utilization require a powerful computer.

As a compromise, one might resort to a control scheme in which open-loop control is constantly
corrected in real time. This kind of control would have the same properties as positional control, without
requiring prohibitive computing expenses. The method proposed in this paper is applicable equally to
the design of an optimal open-loop control at an arbitrary starting point and to real-time correction of
such a control. Methods for correcting open-loop controls in problems with a linear performance
functional and linear constraints on the terminal state were considered in [5, 6].

2. PARAMETRIZATION OF OPTIMAL PROCESSES

2.1. The idea of parametrization. In linear systems, Pontryagin’s maximurmn principle may be interpreted
as a way of parametrizing the family of extremal processes, that is, the processes that form the boundary
of the accessibility region. The parameter is the boundary value of the solution of the adjoint system.
The construction of an optimal control reduces, essentially, to determining a suitable parameter value.
The set of extremal controls is independent of the starting point.
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We will write the fundamental relation of the maximum principle in the form

l'd’(‘t)Bu(T—‘t):(l'glzg(l'(D(‘t)Bé (2.1)

where © = T — ¢ is reversed time, [ is a vector with the geometrical meaning of the normal to the
accessibility domain and ®(1) is the Cauchy fundamental matrix. We shall use the well-known device
of “pulling” trajectories out of the origin in reversed time

di | dt = —(A%(t) + Bil) (2.2)

For any T > 0, every optimal trajectory of (2.2) is an optimal trajectory of (1.1) “pulled” out of the
starting position ¥(T). Indeed: x(f) = Z(t), u(t) = i(z). Thus, given a starting state x°, one must find
a vector / determining the optimal trajectory of (2.2) that reaches x°.

We put p(t) = ®(1)B and replace (2.1) by the equation for the switching times (in reversed time).
We obtain

I'p(t)y=0 (23)

In the last transformation information concerning the sign of the control has been lost, since the roots
of (2.3) determine a pair of sign-symmetric controls. We therefore introduce an additional parameter
¢ = u(+0) which, together with the roots of Eq. (2.3), uniquely defines the control over the whole interval
[0, T]. As a result it becomes possible to use an arbitrary non-zero representative of the straight line,
A, without worrying about the sign of the scalar product I’p(t) of the roots.

For system (1.1) we have

1 70 0 T
om0 o=l
n= 0 0 cost sint)’ P 77| sint
0 0 —sint cost cosT
In scalar form Eq. (2.3) becomes
Lt+l, +Lsint+lcos1=0 (24)

Usually, in order to fit the number of free parameters to the dimensions of the system, one imposes
the additional restriction | /| = 1. In that case the three-parameter equivalent of (2.4) is the equality

at+b=sin(t+¢) (2.5)

The solutions of Eq. (2.5) in the interval [0, T yield the switching times; they are the points at which
the sine curve sin(t + @) intersects the straight line at + b. If the sine curve does not intersect
the straight line anywhere in [0, T, this means that the control applied up to time T has the constant
value ©.

2.2. Parametrization by switching times. Let 1; (i = 1, . . ., n) denote the ordered roots of Eq. (2.3) in
the interval [0, T]. The following two propositions are stated without proof.

Proposition 1. Suppose n = 3. With the exception of the special case when the distance between any
two roots is a multiple of 2rx, one can find three distinct roots 7, T;, 7, (€.g. two adjacent roots and
any third one) such that the vectors p(t; ), p(t;,), p(%;,) are linearly independent. In the aforementioned
special case the optimal control is constant.

Proposition 2. The trajectory segment ¥(t), 0 < 1 < 15 lies on the switching surface.

Let us introduce a parametrization of optimal processes in which the parameters are the switching times.
Suppose n = 3. Consider three roots of Eq. (2.3), denoting them by 1, T;,, T;;, such that the vectors
p(1,), p(%,), p(t;,) are linearly independent. Then a non-zero representative of the straight lines AJ

may be expressed in terms of 1;, 7;, T;,. Retaining the old notation /, we have
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4
l= kz_:‘det(p(‘ltil ) p(Ty) p(Ty). €)e

Heree, (k = 1,...,4) is an orthonormal basis of the space R* and det is the determinant of the matrix
with columns p(1;,), p(;,), p(T;,), - Equation (2.3) becomes

g(t)&det(p(t; ), p(,,). p(Ty), p(1)) =0 (2.6)

The times © =1, 7, T;, are automatically roots of Eq. (2.6). The other switching times are implicit func-
tions of 1;,, 1;,, T;,. However, the conditions of the Implicit Function theorem are not always satisfied.
Accordingly, we introduce a classification of optimal processes.

We will call a root of Eq. (2.3) regular (or: a switching) if it is neither 0 nor T and has multiplicity 1,
and irregular otherwise.

We will call an optimal process (OP) regular if # = 3 and all the roots of Eq. (2.3) are regular. An
OP with n = 3 is irregular if at least one irregular root of Eq. (2.3) exists in the interval [0, T]. An OP
for which Eq. (2.3) has less than three roots will also be considered irregular.

In the regular case, any three switchings may be taken as parameters. The equation for determining
all switching times is (2.6).

The subset of irregular OPs admits of a special parametrization. We shall introduce certain
relationships that define (for fixed T) two-parameter families of OPs with a single irregular root.
These relationships are important in the context of numerical constructions. The other cases
(double or triple irregularity) occur less probably in that context and will therefore not be described
in this paper.

Suppose n = 3. Assume that there are at least two switchings and one irregular root. The existence
of an irregular root imposes an additional restriction on the vector /. To determine vectors / corresponding
to irregular processes, we will use the irregular root in the expression for /. Consequently, along with
the general relationship (2.6), which includes all OPs without exception, we obtain special analogues
of (2.6) for irregular OPs.

If 1 = 0 is a root, we take not any triple of vectors orthogonal to / but a triple including the vector
p(0) and the two vectors p(%), p(T) with regular roots 7, 7. Equation (2.6) becomes

det(p(%), p(T), p(0), p(1))=0 2.7)
Similarly, for the root t =T
det(p(T), p(T), p(T), p(1))=0 (2.8)

If the irregularity is due to the existence of a multiple root 1« (the sine curve is tangent to the straight
line), the vector / is orthogonal to p(t-) and p(t.). Taking this pair of vectors and the vector p(T) with
a regular root T, we obtain

det(p(T), p(.), p(1.), p(1))=0 (2.9)

Equations (2.7)~(2.9) yield a parametrization of irregular OPs with one singularity. Similar derivations
yield relationships for irregular OPs characterized by the existence of two or more singularities.

Note that when n = 3 and the OP is regular or irregular in the sense just considered, the direction
1 is unique.

Let n = 2 and suppose that the roots 1; and 1, are regular To such an OP with two switchings there
corresponds a two-dimensional cone of vectors /, for each of which Eq. (2.3) has the same pair of regular
roots T, T;. There are no other roots if / is in the interior of the cone. For the generators of the cone,
a third root appears (though the structure of the OP is unchanged). One of the generators produces
the irregular root max{0, t+], the other, the root min[7, t+;], where 1.; and 1, are the roots of the
equation

det(p(t;), p(T,y), p(t.), p(1.))=0

nearest T; on the left and nearest 1; on the right. The combination t«; > 0, 7+, < T is impossible. Thus,
each specific pair 1;, T, may be completed by a third root, in two ways. In other words, the OP in question



186 Ye. R. Belousova and M. A. Zarkh

is described by two of the relationships (2.7)~(2.9). In (2.7) and (2.8) the roots %, T are the times 1y, and
1,, while in (2.9) the roots T and t- are the times T; and T«(T«).

We have thus successfully parametrized regular OPs and two-parameter irregular OPs in terms of
switching times.

2.3. Singular surfaces. If one varies not only the parameters 7, T but also 7, then the ends X (T) of the
irregular tra]ectorlcs defined by (2.7)~(2.9) form a system of three-dimensional singular surfaces that
divides R* into domains of regular OPs. In particular, a singular surface of type (2.8) is a switching surface.
If an irregular OP is described by Eq. (2.8) and it has more than two switchings, then the corresponding
trajectory pierces the switching surface at time T, crossing from one regular domain into another. In
all other cases, irregular optimal trajectories move along singular surfaces.

The points of intersection of two three-dimensional singular surfaces of different types (in particular,
trajectories with a single switching of the control) generate two-dimensional singular manifolds. The
latter meet on singular curves. In particular, a singular curve is a pair of trajectories corresponding to
the constant control u = 1. We have described the structure of a three-dimensional switching surface
and singular manifolds of lower dimensions on it elsewhere.t

Let us consider a three-dimensional singular surface as the boundary between two regular domains,
and describe the different ways in which the number of switching times changes as the surface is crossed.
This information will be needed in the next section. If the number of regular roots on the surface exceeds
two, the irregular root becomes regular in one domain (in the case of (2.7), (2.8)) or generates a pair
of closely situated regular roots (in the case of (2.9)). In the second domain the irregular root disappears.
The situation in which the number of regular roots is two is characterized by the presence of two
(“interchangeable”) additional irregular roots (these are 0, T, or 0, T+, or T+;, T). When the singular
surface is crossed, one of the irregular roots disappears and the other becomes regular.

The proposed parametrization (2.6)-(2.9) may also be used for other control systems. It reduces the
number of variables participating in the specification of the OP and is also a convenient tool to describe
irregularities.

3. CORRECTION PROCEDURE

Let us consider a regular OP with switching times 1y, . . ., T, in an interval [0, T; let ¢ be the sign
of the controls # in the interval (0, t,). By the Cauchy formula

n+l Y
1=XT)=0 XL (=) [p(r1-Tdt; 14 =0, 1

i=1 Tl

n+l = T (31)
Equations (2.6) and (3.1) enable us to determine the variations of the end ¥ (T') of the trajectory and

the switching times as the parameters 1y, T,, 13, T are varied

di = MCds, dS=CdS 32)
$=(1,1, 13, 7Y, §=(1,,....7,.T)

(o= BN = B =

1
A 0
- j=1,...n+l
0%, 0 . 01
HT’H ‘.
"14

3% /9T = —~(A% + BI(T)), i(T)=(-1)"c
A%/ dt; =(=1Y20p(t;~T), j=l ..n

tBELOUSOVA Ye. R. and ZARKH M. A, The switching suffaoe in a linear fourth-order speed-of-response problem.
Ekaterinburg, 1992. Deposited at VINITI 24.07.92, No. 2442-B92.
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dt; /01, = ~det(p(1y), p(Ty), p(13), p(1;))/d
a1,/ 0ty = —det(p(T)), p(T,), p(T3). p(x; N/ d
a1, / 9ty = ~det(p(1)), p(1,), p(13). p(t;)/d
d =det(p(t)), p(12), p(13), p(%;))

For a regular process, the matrix MC is non-singular, and it therefore follows from (3.2) that
ds = C(MC)™ dx (3.3)

We can now go on to construct an optimal open-loop control (OC) for an arbitrarily specified starting
point xo € R*. Suppose we have a certain open-loop control (not related in any way to x,) in a certain
time interval [0, Ty, given by a vector Sy and a parameter cgg. The first n components of Sy must be
roots of Eq. (2.6), the others need not even be in the interval [0, Ty). Let xp9 = ¥ (Tg) be the initial
state, evaluated by formula (3.1) and corresponding to this control. We require the variation of the end
of the trajectory to be directed toward the point x;. To that end we express dx in the form

d.i' = (xO — Xoo )du (3.4)

where | is a scalar parametrizing the interval [xgg, Xo): (1) = Xgo + PL(Xo — X00), 0 =< 1 < 1, x(0) = xgq,
x(1) = xo. Substituting (3.4) into (3.3), we obtain the equation

dS/du=C(MCY" (xy = xg9) (3.5

If the interval [xg, xo] does not cut singular surfaces, then, integrating (3.5) with initial condition S(0)
= So0, we find an OC for the point xg, given by a pair Sy = S(1), 6y = 6. Integration of Eq. (3.5) requires
recalculation of the matrices C and M at each step, using explicit formulae.

Of course, it is no known a priori whether the segment [xyg, xo] cuts singular surfaces. Therefore, when
integrating (3.5), one must check for approach to a singular surface and, on crossing it, transform the
vector S in accordance with the scheme described in Section 2.3. In cases when the switching time drifts
or vanishes, the sign of ¢ is reversed.

Remark. With the exception of specially selected cases, the probability that the segment [xqg, xo] will cut a singular
manifold of dimension less than three is zero. That is why we described only three-dimensional singular surfaces
in Section 2.3.

To demonstrate the performance of the algorithm, consider the construction of an OC for the initial state
xp = (0.05, 0.50, 6.00, —2.00)’. The initial control was the pair Sgy = (2.00, 5.00, 7.50, 8.00)", 69 = +1. The
corresponding starting point is xo9 = (4.75, —1.00, 4.80, -0.87)’, calculated by formula (3.1). The control Sy, Ggg
is optimal for xy), because only the times 2, 5 and 7.5 are roots of Eq. (2.6) in the interval [0. 8]. Figure 1 is a
graph showing the variation of the components of the vector S along the interval [xgq, xo]. The interval frqg, xo]
cuts two singular surfaces, and crossing either of them entailed addition of a new switching. Arrival at the
surface was determined by the equality g(0) = 0, while the inequality t; > 0 indicated that the zero root must
be included in the vector S. The algorithm finally produced an OC for the starting position xo, defined by the pair
So = (0.57, 2.53, 6.06, 9.82, 11.52, 12.08)’, 6y = +1. The time required for optimum steering from x, to zero was
12.08.

As a second illustration, consider the problem of constructing an OC for initial points on the straight line
X; = {(x1: 0: 0: 0)": x; &€ R'}. It has been shown [1] that if x; # +4n%2, k € N, the OC has three switchings such
that

=712 13=T-14 (3.6)

If x; = +41%k%, the OC has one switching T, = 21k, and the steering time is T = 4rk. The previously proposed
method [1] for determining the times T;, T;, T3, T in the general case reduces to solving a certain transcendental
equation in 7.

Following the approach proposed in this paper, we introduce a differential equation describing the variation of
the OP as the starting point “moves” along the straight line X;. The solution of this equation yields the OC as a
function of x,.

For processes with three switchings, C is the identity matrix, so that the relationship d¥ = MCds of (3.2) with
o = —1 becomes
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) -1 i -1 172 | fdty] fdx
-sin(t;—=T) sin(t,~T) -sin(13-T) 0 dus)l fdx; (37

—-cos(t—~T) cos(t,-T) —cos(13-T) 1/2 || JdT]| {dx4

Let us consider variations of the form dx = (dx;; 0; 0; 0)" and substitute expressions (3.6) for 1, and 13 and the
analogous expressions for the differentials dt, and dt; into (3.7). It will suffice to use just one row of the matrix
equality (3.7). Selecting the third row and solving it for d1,/dT, we obtain

dt) 1 dT = (sin1y —sin(T/ 2))/{2(sin(ty — T) +sinT,)] (3.8)

Using formula (3.1), it is not difficult to check that the OC Sy = (/2; ®; 3n/2; 21)", 099 = —1 corresponds to
the starting position xgo = (%/2; 0; 0; 0)’. Thus, a suitable initial condition for (3.8) is 1,(21) = n/2. Integrating
(3.8), we obtain 1, = 11(T). Using (3.6), we get 1, = 1(T), 13 = 15(T). Equation (3.1) gives x; = x,(T). Hence one
can express T in terms of x;. Figure 2 plots the functions 1, 1, 15, T against x,.

Thus Eq. (3.8) enables one to find OCs immediately for all points of the straight line X.

4. CORRECTING FEEDBACK

We shall now consider system (1.1) as an idealized, standard model, used to design controls in a real
system whose dynamics may depart from that of (1.1) (e.g. owing to noise). Let x(f) denote the position
of the standard system at time ¢ and X(¢) the position of the real system. We shall assume that the vectors
x(t) and £(f) are of the same length. Suppose that both systems start from the same position x° at time
ty = 0. The times at which the real system will be corrected will depend on a special parameter € > 0.
At these times the posmon of the standard system will change abruptly.

We obtain an OC S(x"), 6(x°) and, thereby, the standard motion x(-) of system (1 1) from the point
x°. The standard open-loop control governs the real system up to the first time ¢% at wh1ch | x(t3) -
i)i=e An OC for the position x(¢7) of the standard system is known: S(x(¢1)) = S(x° o, 76:9—1)
o(x(tt )) o(x°). After carrying out the correction procedure, with the roles of xog, X, in (3.5) taken by
the points x(¢}) and x(¢1), respectively, one finds an OC for the state x(¢1). This yields a new standard
motion from the point X(¢1). The same OC continues to govern the system until the next correction
time 3, when | x(¢3) — £(t3)| = €, and so on.

The correction times may also be selected differently, e.g. they may be made to depend on a given
time step A. As A — 0 one obtains a continuous correction regime.

Remarks. 1. In case less than three switching times remain in the vector S(x(¢})) (i.e. the point x(¢}) lies on the
switching surface), one introduces additional switching times in order to ensure that the input to the procedure
should contain corrections of a regular OP for some point close to x(¢}).
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If only one switching 1, remains in the vector S(x(¢})), additional switchings are introduced at 7, - 8, 7; + &
(where 6 is a small positive number). If the vector S(x(¢¥)) contains two switchings 1, and 1,, one introduces
either two additional switchings 1+ — §, T + 8 (1« € (0, ty)), or one additional switching  (in the latter case the
parameter ¢ changes sign). The time 1« and the appropriate version of those described are determined by the rule
given in Section 2.2. If there are no switchings in 1« — §, ©. + 8 (1. € (0, 1;)) one considers switchings T — 33,
T-28T-58.

2. Assuming that the real motion is described by a differential equation with a known or accurately measured
right-hand side f, one can write down the continuous correction equation

dS/dt=C(MC)™ (f - (A% + Bu)) @“.1)
Equation (4.1) has a classical solution in regular domains, which changes form after passing through singular

surfaces of types (2.7) and (2.9). Solutions on switching surfaces are defined as in Filippov [9].
For correction in a regular domain with a small time step A, we deduce from (4.1) that

S(t+A)= NOIYs (/0% (X(t+A)~x(1+A)) 4.2)

Thus, we have a forrnula that is identical with the single-step solution of Eq. (3.5). To carry out calculations using
this formula one uses the states ¥ and x at discrete times.

If the interval [x(t -+ A), X¥(t + A)] cuts a singular surface at some point x(# + A) + p(t + A) —x(t + A)),
0 =< pu =1, Eq. (4.2) is replaced by two equations

S, = S(1)+uC(MC)  (Z(t+A) - x(t +4))
S(t+A)=S" +(1-W)C(MC)  (F(1+A)~ x(t +4A))
where the vector S. is transformed into $* in accordance with the crossed singularity.

Let us demonstrate the performance of the correcting feedback for a “real” system described by the
equation

Table 1
I S(x(¢)) S(x(1]))
1.41 (0.56; 2.53; 6.06; 9.82; 10.67) (0.70; 2.71; 6.17; 10.06; 10.88)
2.84 (0.70; 2.71; 6.17; 9.46) (0.84; 2.88; 6.21; 9.63)
4.24 (0.84; 2.88; 6.21; 8.23) (0.93; 2.98; 6.20; 8.33)
5.64 (0.93; 2.98; 6.20; 6.93) (0.99; 3.05; 6.18; 7.00)
7.06 (0.99; 3.05; 5.58) (1,07; 3.21; 5.67; 5.76)
845 (1.07; 3.21; 4.37) (1.14; 3.32; 447, 4.63)

l.l.32 (1.14; 1.77) (0.56; 1.62; 3.33; 4.11)
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dx 0, 1(1, 1, sint, cost)’ t€[0,3n]
:i——Ax(t)+Bu+U(t) v(t)= { 1> 3n

where the matrices 4 and B are the same as in (1.1), and v(¢) is interpreted as some interference.

Consider the starting point x° = (0.05, 0.50, 6.00, ~2.00). The correspondmg standard motion was found in

Section 3. Figure 3 shows the standard optimal open-loop control for x° (the solid line), the real control synthesized
by correcting feedback (the dashed line; € = 0.3; the correction times are indicated by small circles) and the actual
control obtained by continuous correction (the dash—dot line; the correction times are selected with a step A =
0.05; the inclined dashed line indicated by crosses corresponds to a “chattering” control). Table 1, drawn up for
the case € = 0.3, shows the correction times and the input and corrected switching vectors. The last correction was
carried out after the interference had been cut off. All motions arrive at the origin.
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